Inequality in a triangle with symedians.

https://www.linkedin.com/feed/update/urn:li:activity:6694859623859580928 JP.300. In $\triangle ABC, I$ -incenter, ID, IE, IF -symedians in $\triangle BIC, \triangle CIA, \triangle AIB, D \in BC, E \in CA, F \in AB$. Prove that :

$$\frac{[DFE]}{[ABC]} \ge \frac{r^2}{2R^2 - Rr - 2r^2}.$$

Proposed by Marian Urzarescu.

Solution by Arkady Alt, San Jose, California, USA.

First we will consider more general configuration, that is for any three numbbers $\alpha, \beta, \gamma \in (0,1)$ and points $P \in BC, Q \in CA, R \in AB$ such that $\frac{BP}{PC} = \frac{1-\alpha}{\alpha}$, $\frac{CQ}{QA} = \frac{1-\beta}{\beta}, \frac{AR}{RB} = \frac{1-\gamma}{\gamma}$ and we will express $\frac{[PQR]}{[ABC]}$ via α, β, γ .

We have $[PQR] = \frac{c(1-\gamma) \cdot b\beta}{2} \cdot \sin A = \beta(1-\gamma) \cdot \frac{bc \sin A}{2} = \beta(1-\gamma)[ABC]$ and similarly $[BDF] = \gamma(1-\alpha)[ABC]$, $[CED] = \alpha(1-\beta)[ABC]$. Hence $[PQR] = [ABC](1-c(1-\gamma)-\gamma(1-\alpha)-\alpha(1-\beta)) = [ABC](1-\alpha-\beta-\gamma+\alpha\beta+\beta\gamma+\gamma\alpha) \Leftrightarrow$ (1) $\frac{[PQR]}{[ABC]} = 1-\alpha-\beta-\gamma+\alpha\beta+\beta\gamma+\gamma\alpha$.

Now we can come back to the problem

Let l_a be length of bisector of angle A. Since $l_a^2 = \frac{4bcs(s-a)}{(b+c)^2}$ and $IA = \frac{l_a(b+c)}{2s}$ then $IA^2 = \frac{bc(s-a)}{s} = \frac{abc}{s} \cdot \frac{s-a}{a}$ and similarly we obtain $IB^2 = \frac{abc}{s} \cdot \frac{s-b}{b}$, $IC^2 = \frac{abc}{s} \cdot \frac{s-c}{c}$. Since *ID*, *IE*, *IF* be symedians in $\triangle IBC$, $\triangle ICA$, $\triangle IAB$ respectively then $\frac{BD}{DC} = \frac{IB^2}{IC^2} = \frac{\frac{s-a}{a}}{\frac{s-b}{s-b}}$ and similarly $\frac{CE}{EA} = \frac{IC^2}{IA^2} = \frac{\frac{s-b}{b}}{\frac{s-c}{s-c}}, \frac{AF}{FB} = \frac{IA^2}{IB^2} = \frac{\frac{s-c}{c}}{\frac{s-a}{s-a}}$ Denoting $x := \frac{s-a}{a}, y := \frac{s-b}{b}, z := \frac{s-c}{c}$ and $\alpha := \frac{y}{x+y}, \beta := \frac{z}{y+z}, \gamma := \frac{x}{z+x}$ we obtain $\frac{BD}{DC} = \frac{1-\alpha}{\alpha}, \frac{CE}{EA} = \frac{1-\beta}{\beta}, \frac{AF}{FB} = \frac{1-\gamma}{\gamma}$ and for this α, β, γ by replacing in (1) (P,Q,R) with (D,E,F) we obtain $\frac{[DEF]}{[ABC]} = 1 - \alpha - \beta - \gamma + \alpha\beta + \beta\gamma + \gamma\alpha = 2$ $\frac{yzx}{(v+z)(z+x)} + \frac{xyz}{(x+y)(y+z)(z+x)} = \frac{2xyz}{(x+y)(y+z)(z+x)}.$ Let R, r, s be circumradius, inradius and semiperimeter in $\triangle ABC$ tof the problem. We have $xyz = \frac{(s-a)(s-b)(s-c)}{abc} = \frac{r^2s}{4Rrs} = \frac{r}{4R}, x+y+z = \frac{r^2s}{4Rrs}$ $\frac{s-a}{a} + \frac{s-b}{b} + \frac{s-c}{c} = \frac{s(ab+bc+ca)}{abc} - 3 = \frac{s(s^2+4Rr+r^2)}{4Rrs} - 3 =$ $\frac{s^2 + 4Rr + r^2}{4Rr} - 3 = \frac{s^2 - 8Rr + r^2}{4Rr}, xy + yz + zx = \sum \frac{(s-a)(s-b)}{ab} =$ $\frac{1}{abc}\sum c(s-a)(s-b) = \frac{1}{abc}\sum (s^2c - (a+b)cs + abc) =$ $\frac{2s^3 - 2(ab + bc + ca)s + 3abc}{abc} = \frac{2s^3 - 2(s^2 + 4Rr + r^2)s + 12Rrs}{4Rra} = \frac{2R - r}{2R}$ and (x + y)(y + z)(z + x) = (x + y + z)(xy + yz + zx) - xyz $\frac{s^2 + r^2 - 8Rr}{4Rr} \cdot \frac{2R - r}{2R} - \frac{r}{4R} = \frac{(2R - r)(s^2 + r^2 - 8Rr) - 2Rr^2}{8R^2r}.$ Hence, $\frac{2xyz}{(x + y)(y + z)(z + x)} = \frac{\frac{r}{2R} \cdot 8R^2r}{(2R - r)(s^2 + r^2 - 8Rr) - 2Rr^2} =$ $\frac{4Rr^2}{(2R-r)(s^2+r^2-8Rr)-2Rr^2} \geq \frac{4Rr^2}{(2R-r)(4R^2+4Rr+3r^2+r^2-8Rr)-2Rr^2} =$ $\frac{4Rr^2}{(2R-r)\cdot 4(R^2-Rr+r^2)-2Rr^2} = \frac{2Rr^2}{4R^3+5Rr^2-6R^2r-2r^3}.$ Thus, remains to prove $\frac{2Rr^2}{4R^3 + 5Rr^2 - 6R^2r - 2r^3} \ge \frac{r^2}{2R^2 - Rr - 2r^2} \iff$ $2R(2R^2 - Rr - 2r^2) \ge 4R^3 + 5Rr^2 - 6R^2r$ We have $2R(2R^2 - Rr - 2r^2) - (4R^3 + 5Rr^2 - 6R^2r - 2r^3) = r(R - 2r)(4R - r) > 0$ because $R \geq 2r$ (Eulers Inequality).