
Inequality in a triangle with symedians.

https://www.linkedin.com/feed/update/urn:li:activity:6694859623859580928

JP.300. In ABC, I–incenter, ID, IE, IF symedians in BIC,CIA,AIB,

D  BC,E  CA,F  AB. Prove that :
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Proposed by Marian Urzarescu.

Solution by Arkady Alt, San Jose, California, USA.
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Let R, r, s be circumradius, inradius and semiperimeter in ABC tof the problem.
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